Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 611
Filter
1.
Sci Rep ; 14(1): 10684, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724636

ABSTRACT

Pollution by heavy metals (HMs) has become a global problem for agriculture and the environment. In this study, the effects of pristine biochar and biochar modified with manganese dioxide (BC@MnO2) and zinc oxide (BC@ZnO) nanoparticles on the immobilization and bioavailability of Pb, Cd, Zn, and Ni in soil under ryegrass (Lolium perenne L.) cultivation were investigated. The results of SEM-EDX, FTIR, and XRD showed that ZnO and MnO2 nanoparticles were successfully loaded onto biochar. The results showed that BC, BC@MnO2 and BC@ZnO treatments significantly increased shoots and roots dry weight of ryegrass compared to the control. The maximum dry weight of root and shoot (1.365 g pot-1 and 4.163 g pot-1, respectively) was reached at 1% BC@MnO2. The HMs uptake by ryegrass roots and shoots decreased significantly after addition of amendments. The lowest Pb, Cd, Zn and Ni uptake in the plant shoot (13.176, 24.92, 32.407, and 53.88 µg pot-1, respectively) was obtained in the 1% BC@MnO2 treatment. Modified biochar was more successful in reducing HMs uptake by ryegrass and improving plant growth than pristine biochar and can therefore be used as an efficient and cost effective amendment for the remediation of HMs contaminated soils. The lowest HMs translocation (TF) and bioconcentration factors were related to the 1% BC@MnO2 treatment. Therefore, BC@MnO2 was the most successful treatment for HMs immobilization in soil. Also, a comparison of the TF values of plant showed that ryegrass had a good ability to accumulate all studied HMs in its roots, and it is a suitable plant for HMs phytostabilization.


Subject(s)
Charcoal , Lolium , Manganese Compounds , Metals, Heavy , Oxides , Soil Pollutants , Zinc Oxide , Lolium/metabolism , Lolium/growth & development , Charcoal/chemistry , Soil Pollutants/metabolism , Oxides/chemistry , Metals, Heavy/metabolism , Zinc Oxide/chemistry , Manganese Compounds/chemistry , Manganese Compounds/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Nanoparticles/chemistry , Biological Availability , Soil/chemistry
2.
Water Sci Technol ; 89(8): 1946-1960, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38678401

ABSTRACT

The bioretention system is one of the most widely used low impact development (LID) facilities with efficient purification capacity for stormwater, and its planting design has been a hot spot for research at home and abroad. In this paper, ryegrass (Lolium perenne L.), bermuda (Cynodon dactylon Linn.), bahiagrass (Paspalum notatum Flugge), and green grass (Cynodon dactylon × C .transadlensis 'Tifdwarf') were chosen as plant species to construct a shallow bioretention system. The growth traits and nutrient absorption ability of four gramineous plants were analyzed. Their tolerance, enrichment, and transportation capacity were also evaluated to compare plant species and their absorptive capacity of heavy metals (Cu, Pb, and Zn). Results showed that the maximum absorption rate (Imax) ranged from 22.1 to 42.4 µg/(g·h) for P and ranged from 65.4 to 104.8 µg/(g·h) for NH4+-N; ryegrass had the strongest absorption capacity for heavy metals and the maximum removal rates of Cu, Pb, and Zn by four grasses were 78.4, 59.4, and 51.3%, respectively; the bioretention cell with ryegrass (3#) was significantly more effective in purifying than the unplanted bioretention cell (1#) during the simulated rainfall test. Overall, the system parameters were optimized to improve the technical application of gramineous plants in the bioretention system.


Subject(s)
Rain , Water Pollutants, Chemical , Metals, Heavy , Biodegradation, Environmental , Poaceae , Lolium/metabolism , Water Purification/methods
3.
J Hazard Mater ; 470: 134228, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38626683

ABSTRACT

Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.


Subject(s)
Arsenic , Cadmium , Gene Expression Regulation, Plant , Lolium , Plant Growth Regulators , Stress, Physiological , Cadmium/toxicity , Lolium/drug effects , Lolium/metabolism , Lolium/genetics , Arsenic/toxicity , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Indoleacetic Acids/metabolism , Abscisic Acid/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
4.
Environ Pollut ; 349: 123978, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38615839

ABSTRACT

Sustainable technologies for the recovery of rare earth elements (REE) from waste need to be developed to decrease the volume of ore mining extractions and its negative environmental consequences, while simultaneously restoring previously impacted lands. This is critical due to the extensive application of REE in everyday life from electronic devices to energy and medical technologies, and the dispersed distribution of REE resources in the world. REE recovery by plants has been previously studied but the feasibility of REE phytoextraction from a poorly soluble solid phase (i.e., nanoparticles) by different plant species has been rarely investigated. In this study, the effect of biostimulation and bioaugmentation on phytorecovery of REE nanoparticles (REE-NP) was investigated by exposing ryegrass seeds to REE-NP in hydroponic environments. This was studied in two sets of experiments: bioaugmentation (using CeO2 nanoparticles and Methylobacterium extorquens AM1 pure culture), and biostimulation (using CeO2 or Nd2O3 nanoparticles and endogenous microorganisms). Addition of M. extorquens AM1 in bioaugmentation experiment including 500 mg/L CeO2 nanoparticles could not promote the nanoparticles accumulation in both natural and surface-sterilized treatments. However, it enhanced the translocation of Ce from roots to shoots in sterile samples. Moreover, another REE-utilizing bacterium, Bacillus subtilis, was enriched more than M. extorquens in control samples (no M. extorquens AM1), and associated with 52% and 14% higher Ce extraction in both natural (165 µg/gdried-plant) and surface-sterilized samples (136 µg/gdried-plant), respectively; showing the superior effect of endogenous microorganisms' enrichment over bioaugmentation in this experiment. In the biostimulation experiments, up to 705 µg/gdried-plant Ce and 19,641 µg/gdried-plant Nd could be extracted when 500 mg/L REE-NP were added. Furthermore, SEM-EDS analysis of the surface and longitudinal cross-sections of roots in Nd2O3 treatments confirmed surface and intracellular accumulation of Nd2O3-NP. These results demonstrate stimulation of endogenous microbial community can lead to an enhanced REE phytoaccumulation.


Subject(s)
Biodegradation, Environmental , Cerium , Hydroponics , Lolium , Cerium/chemistry , Cerium/metabolism , Lolium/metabolism , Neodymium/chemistry , Oxides/chemistry , Soil Pollutants/metabolism , Nanoparticles/chemistry
5.
Chemosphere ; 356: 141896, 2024 May.
Article in English | MEDLINE | ID: mdl-38579949

ABSTRACT

Complex rhizoremediation is the main mechanism of phytoremediation in organic-contaminated soil. Low molecular weight organic acids (LMWOAs) in root exudates have been shown to increase the bioavailability of contaminants and are essential for promoting the dissipation of contaminants. The effects of root exudates on the dissipation of organophosphate esters (OPEs) in soil are unclear. Consequently, we studied the combined effects of root exudates, soil enzymes and microorganisms on OPEs (tri (1-chloro-2-propyl) phosphate (TCPP) and triphenyl phosphate (TPP)) dissipation through pot experiments. Oxalic acid (OA) was confirmed to be the main component of LMWOAs in root exudates of ryegrass. The existence of OA increased the dissipation rate of OPEs by 6.04%-25.50%. Catalase and dehydrogenase activities were firstly activated and then inhibited in soil. While, urease activity was activated and alkaline phosphatase activity was inhibited during the exposure period. More bacteria enrichment (e.g., Sphingomonas, Pseudomonas, Flavisolibacter, Pontibacter, Methylophilus and Massilia) improved the biodegradation of OPEs. In addition, the transformation paths of OPEs hydrolysis and methylation under the action of root exudates were observed. This study provided theoretical insights into reducing the pollution risk of OPEs in the soil.


Subject(s)
Biodegradation, Environmental , Esters , Lolium , Oxalic Acid , Plant Roots , Soil Microbiology , Soil Pollutants , Soil , Oxalic Acid/metabolism , Soil Pollutants/metabolism , Lolium/metabolism , Plant Roots/metabolism , Soil/chemistry , Esters/metabolism , Organophosphates/metabolism , Oxidoreductases/metabolism , Catalase/metabolism , Bacteria/metabolism , Plant Exudates/metabolism , Plant Exudates/chemistry
6.
J Hazard Mater ; 471: 134322, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38636238

ABSTRACT

This study focused on the effects of urea humate-based porous materials (UHPM) on soil aggregates, plant physiological characteristics, and microbial diversity to explore the effects of UHPM on the phytoremediation of petroleum-contaminated soil. The compositions of soil aggregates, ryegrass (Lolium perenne) biomass, plant petroleum enrichment capacity, and bacterial communities in soils with and without UHPM were investigated. The results showed that UHPM significantly increased soil aggregate content by 0.25 mm-5 mm, resulting in higher fertilizer holding capacity, erosion resistance capacity, and plant biomass and microbial number than the soil without UHPM mixed. In addition, UHPM decreased the absorption of petroleum by plants in the soil while increasing the abundance of degrading bacteria and petroleum-degrading-related genes in the soil, thereby promoting the removal of hard-to-degrade petroleum components. RDA showed that, compared with the unimproved soil, each soil indicator was positively correlated with a high abundance of degrading bacteria in the improved soil and was significant. UHPM can be regarded as a petroleum-contaminated soil remediation agent that combines slow nutrient release with soil improvement effects.


Subject(s)
Bacteria , Biodegradation, Environmental , Lolium , Petroleum , Soil Microbiology , Soil Pollutants , Soil Pollutants/metabolism , Petroleum/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Lolium/metabolism , Urea/metabolism , Porosity , Biomass , Soil/chemistry
7.
Plant Cell Environ ; 47(6): 2274-2287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38488789

ABSTRACT

The 18O enrichment (Δ18O) of cellulose (Δ18OCel) is recognized as a unique archive of past climate and plant function. However, there is still uncertainty regarding the proportion of oxygen in cellulose (pex) that exchanges post-photosynthetically with medium water of cellulose synthesis. Particularly, recent research with C3 grasses demonstrated that the Δ18O of leaf sucrose (Δ18OSuc, the parent substrate for cellulose synthesis) can be much higher than predicted from daytime Δ18O of leaf water (Δ18OLW), which could alter conclusions on photosynthetic versus post-photosynthetic effects on Δ18OCel via pex. Here, we assessed pex in leaves of perennial ryegrass (Lolium perenne) grown at different atmospheric relative humidity (RH) and CO2 levels, by determinations of Δ18OCel in leaves, Δ18OLGDZW (the Δ18O of water in the leaf growth-and-differentiation zone) and both Δ18OSuc and Δ18OLW (adjusted for εbio, the biosynthetic fractionation between water and carbohydrates) as alternative proxies for the substrate for cellulose synthesis. Δ18OLGDZW was always close to irrigation water, and pex was similar (0.53 ± 0.02 SE) across environments when determinations were based on Δ18OSuc. Conversely, pex was erroneously and variably underestimated (range 0.02-0.44) when based on Δ18OLW. The photosynthetic signal fraction in Δ18OCel is much more constant than hitherto assumed, encouraging leaf physiological reconstructions.


Subject(s)
Carbon Dioxide , Cellulose , Humidity , Oxygen Isotopes , Plant Leaves , Sucrose , Plant Leaves/metabolism , Cellulose/metabolism , Carbon Dioxide/metabolism , Sucrose/metabolism , Oxygen Isotopes/metabolism , Lolium/metabolism , Lolium/growth & development , Lolium/physiology , Atmosphere , Photosynthesis , Water/metabolism
8.
Plant Physiol Biochem ; 208: 108512, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38493664

ABSTRACT

Perennial ryegrass (Lolium perenne) is a widely used cool season turfgrass with outstanding turf quality and grazing tolerance. High temperature is the key factor restricting the distribution of perennial ryegrass in temperate and sub-tropic regions. In this study, we found that one HEAT SHCOK TRANSCRIPTION FACOTR (HSF) class A gene from perennial ryegrass, LpHSFA3, was highly induced by heat stress. LpHSFA3 is localized in nucleus and functions as a transcription factor. Ectopic overexpression of LpHSFA3 in Arabidopsis improved thermotolerance and rescued heat sensitive deficiency of athsfa3 mutant. Overexpression of LpHSFA3 in perennial ryegrass enhanced heat tolerance and increased survival rate in summer season as evidenced by decreased EL and MDA, increased number of green leaves and total chlorophyll content. LpHSFA3 binds to the HSE region in LpHSFA2a promoter to constitutively activate the expression of LpHSFA2a and downstream heat stress responsive genes. Ectopic overexpression of LpHSFA2a consequently rescued thermal sensitivity of athsfa3 mutant and enhanced thermotolerance of athsfa2 mutant. Perennial ryegrass protoplasts with overexpression of LpHSFA3 and LpHSFA2a exhibited induction of similar subsets of heat responsive genes. These results indicated that transcription factor LpHSFA3 functions as positive regulator of LpHSFA2a to improve thermotolerance of perennial ryegrass, providing further evidence to understand the regulatory networks of plant heat stress response.


Subject(s)
Arabidopsis , Lolium , Thermotolerance , Lolium/metabolism , Thermotolerance/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Cold Temperature , Arabidopsis/genetics
9.
Environ Sci Pollut Res Int ; 31(18): 26747-26759, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456984

ABSTRACT

Given the high impact of traditional mining, the recovery of rare earth elements (REEs) from hazardous waste materials could become an option for the future in accordance with the principles of the circular economy. In this work, the technical feasibility of REEs recovery from metal mine tailings has been explored using electrokinetic-assisted phytoremediation with ryegrass (Lolium perenne L.). Phytoextraction combined with both AC current and DC current with reversal polarity was applied (1 V cm-1, 8 h day-1) to real mine tailings containing a total concentration of REEs (Sc, Y, La, Ce, Pr, and Nd) of around 146 mg kg-1. Changes in REEs geochemical fractionation and their concentrations in the soil pore water showed the mobilization of REEs caused by plants and electric current; REE availability was increased to a higher extent for combined electrokinetic-assisted phytoextraction treatments showing the relevant role of plants in the process. Our results demonstrated the initial hypothesis that it is feasible to recover REEs from real metal mining waste by phytoextraction and that the performance of this technology can be significantly improved by applying electric current, especially of the AC type, which increased REE accumulation in ryegrass in the range 57-68% as compared to that of the treatment without electric field application.


Subject(s)
Biodegradation, Environmental , Lolium , Metals, Rare Earth , Mining , Lolium/metabolism , Soil Pollutants/metabolism
10.
Physiol Plant ; 176(1): e14210, 2024.
Article in English | MEDLINE | ID: mdl-38380683

ABSTRACT

Perennial ryegrass (Lolium perenne L.) is an outstanding turfgrass and forage cultivated in temperate regions worldwide. However, poor tolerance to extreme cold, heat, or drought limits wide extension and cultivation. DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR1s (DREB1s) play a vital role in enhancing plant tolerance to abiotic stress, specifically for low-temperature stress. In this study, a total of 24 LpDREB1 family members were identified from the released genome of perennial ryegrass. Phylogenetic analysis showed that the LpDREB1 genes are divided into 7 groups that have close relationships with rice homologues. Conserved motif analysis revealed that members within the same group have similar conserved motif compositions. All LpDREB1s lack introns, and the promoter sequences of LpDREB1 genes contain multiple cis-acting elements associated with stress response, phytohormone signal transduction and plant growth and development. The majority of LpDREB1 genes were upregulated by drought, submergence, heat and cold stress treatments, including LpDREB1H2. Further investigation showed that LpDREB1H2 is localized in the nucleus. Overexpression of LpDREB1H2 in Arabidopsis induced the expression of cold-responsive (COR) genes, increased the levels of osmotic adjusting substances, and enhanced antioxidant enzyme activities, thus improving the cold tolerance of Arabidopsis. This study lays a foundation for further understanding the function of LpDREB1 genes in perennial ryegrass and provides insights for plant stress tolerance breeding.


Subject(s)
Arabidopsis , Lolium , Transcription Factors/metabolism , Cold-Shock Response/genetics , Lolium/genetics , Lolium/metabolism , Arabidopsis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Plants/metabolism , Antioxidants/metabolism , Gene Expression Regulation, Plant/genetics
11.
Sci Total Environ ; 913: 169771, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38176551

ABSTRACT

Phytostabilization of metal-contaminated soils can be enabled or improved by biochar application. However, biochar-aided effects vary on biochar types, and little attention has been paid to plant management (time and cutting) to enhance phytostabilization efficiency in synergy with biochar. Therefore, biochars derived from pig manure (PM), Japanese knotweed (JK), and a mixture of both (P1J1) were applied to Pb and As mining soil with ryegrass cultivation to assess the biochar-induced effects on plant growth, dissolved organic matter (DOM), As and Pb mobility, and bioaccumulation within a phytostabilization strategy. Additional treatments involving the combined biochar (P1J1) and ryegrass were conducted to explore the influence of sequential cutting and growing time on facilitating phytostabilization efficacy. Biochar applications promoted plant growth, progressively increasing over time, but were not enhanced by cutting. Short and long-wavelength humic-like DOM substances identified in the soil pore water after biochar application varied depending on the biochar types used, providing evidence for the correlation among DOM changes, biochar origin, and metal immobilization. Biochar-treated soils exhibited reduced Pb availability and enhanced As mobility, with P1J1 stabilizing Pb significantly similar to PM while causing less As mobilization as JK did. The mobilized As did not result in increased plant As uptake; instead, all biochar-added plants showed a significant decrease in As and Pb concentrations compared to those without biochar. Soil available As decreased while available Pb increased with time, and cutting did not influence soil As behavior but did reduce soil Pb release. Nevertheless, plant As and Pb concentrations decreased over time, whereas those in multiple-cut plants were generally higher than those without cuts. Biochar, especially P1J1, along with growth time, holds promise in promoting plant biomass, reducing plant Pb and As concentrations, and minimizing the migration of PbAs within the soil.


Subject(s)
Lolium , Soil Pollutants , Animals , Swine , Lead , Lolium/metabolism , Soil Pollutants/analysis , Soil , Charcoal , Plants/metabolism
12.
Pestic Biochem Physiol ; 198: 105737, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225083

ABSTRACT

Italian ryegrass (Lolium multiflorum L.) is an invasive species widely spread in croplands worldwide. The intensive use of glyphosate has resulted in the selection of resistance to this herbicide in Italian ryegrass. This work characterized the response to glyphosate of Italian ryegrass populations from the South and Southwest regions of Paraná, Brazil. A total of 44 Italian ryegrass populations were collected in farming areas, and were classified for glyphosate resistance with 75% of populations resistant to gloyphosate. Of these, 3 resistant (VT05AR, MR20AR and RN01AR) and three susceptible (VT07AS, MR05AS and RN01AS) of these populations were selected to determine the resistance level and the involvement of the target site mechanisms for glyphosate resistance. Susceptible populations GR50 ranged from 165.66 to 218.17 g.e.a. ha-1 and resistant populations from 569.37 to 925.94, providing RI ranging from 2.88 and 4.70. No mutation in EPSPS was observed in the populations, however, in two (MR20AR and RN02AR) of the three resistant populations, an increase in the number of copies of the EPSPs gene (11 to 57×) was detected. The number of copies showed a positive correlation with the gene expression (R2 = 0.86) and with the GR50 of the populations (R2 = 0.81). The increase in EPSPS gene copies contributes to glyphosate resistance in Italian ryegrass populations from Brazil.


Subject(s)
Herbicides , Lolium , Glyphosate , Lolium/genetics , Lolium/metabolism , Glycine/pharmacology , Glycine/metabolism , Brazil , Herbicide Resistance/genetics , Herbicides/pharmacology , Herbicides/metabolism , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics
13.
Ecotoxicol Environ Saf ; 271: 115975, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244514

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous at relatively high concentrations by atmospheric deposition, and they are threatening to the environment. In this study, the toxicity of naphthalene on tall fescue and its potential responding mechanism was first studied by integrating approaches. Tall fescue seedlings were exposed to 0, 20, and 100 mg L-1 naphthalene in a hydroponic environment for 9 days, and toxic effects were observed by the studies of general physiological studies, chlorophyll fluorescence, and root morphology. Additionally, Ultra Performance Liquid Chromatography - Electrospray Ionization - High-Resolution Mass Spectrometry (UPLC-ESI-HRMS) was used to depict metabolic profiles of tall fescue under different exposure durations of naphthalene, and the intrinsic molecular mechanism of tall fescue resistance to abiotic stresses. Tall fescue shoots were more sensitive to the toxicity of naphthalene than roots. Low-level exposure to naphthalene inhibited the electron transport from the oxygen-evolving complex (OEC) to D1 protein in tall fescue shoots but induced the growth of roots. Naphthalene induced metabolic change of tall fescue roots in 12 h, and tall fescue roots maintained the level of sphingolipids after long-term exposure to naphthalene, which may play important roles in plant resistance to abiotic stresses.


Subject(s)
Festuca , Lolium , Polycyclic Aromatic Hydrocarbons , Festuca/metabolism , Naphthalenes/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Lolium/metabolism , Mass Spectrometry
14.
Int J Phytoremediation ; 26(3): 382-392, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37578385

ABSTRACT

Based on the growth-promoting effect of plant growth promoting bacteria on plants and the mobilization of Cd by citric acid, an experiment was designed in which the combined treatment of Bacillus megaterium and citric acid promoted ryegrass to repair Cd-contaminated soil. This study aimed to evaluate the effects of different treatments on the antioxidant enzyme activity, photosynthesis intensity, Cd accumulation, and rhizosphere cadmium migration under cadmium contamination conditions. And the soil morphology and structure changes were studied by infrared spectroscopy FourierTransformInfrared(FT-IR) and scanning electron microscope Energy Dispersive Spectrometer(SEM-EDS) before and after different treatments. The results show that the combined treatment of Bacillus megaterium and citric acid significantly improved the oxidative stress defense and plant photosynthesis and increased of rye biomass. rye biomass 1.28 times higher than CK treatment. Joint treatment significantly increased the amount of shoot accumulation of Cd, 2.31 times higher than CK treatment, increased the migration and accumulation of cadmium. FTIR and SEM-EDS also showed that the organic constituents such as O-H, C-O and C-N in soils as a major mechanism for mobilization of the heavy metal Cd. Thus, the combined treatment of Bacillus megaterium and citric acid can promote plant growth, improve the damage to ryegrass caused by single organic acid addition, and improve the plant extraction efficiency, which is a feasible way to repair Cd-contaminated soil through activated extraction system.


The novelty of this study is the combined application of bacteria and chelating agents to ryegrass to improve phytoremediation efficiency. Bacillus giganosus has a good role in promoting the growth of ryegrass. As citrate, a small molecule chelate, can activate heavy metal cadmium and detoxify heavy metals, so it was selected. This study revealed in detail the response of ryegrass to the heavy metal Cd after exogenous addition of Bacillus gigansus and citrate, which is important for the application of cadmium removal by phytoremediation.


Subject(s)
Lolium , Metals, Heavy , Soil Pollutants , Cadmium/metabolism , Biodegradation, Environmental , Lolium/metabolism , Citric Acid/pharmacology , Spectroscopy, Fourier Transform Infrared , Soil Pollutants/metabolism , Metals, Heavy/analysis , Soil/chemistry , Bacteria/metabolism
15.
Plant Physiol Biochem ; 206: 108220, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039583

ABSTRACT

Phosphorus (P) is critical to plants in metal-contaminated soils because it participates in various biochemical reactions during plant growth. However, the mechanisms of P in mitigating the toxicity of heavy metals to ryegrass root is still veiled. In this study, the physiological and biochemical dynamics of the ryegrass root under various cadmium (Cd) and P conditions were investigated in a hydroponic system. Cd stress decreased the length of the ryegrass root, but P application enhanced the root elongation to reduce the Cd concentration in the root. Both Cd and P dosages were positively correlated with hemicellulose 1 content, pectin content, and PME activity, while having a negative effect on cellulose content. Moreover, the addition of 80 mg L-1 P increased the contents of pectin and hemicellulose 1 by 2.5 and 5.8% even with 4 mg L-1 Cd. In addition, P supply increased pectin methylesterbase activity under Cd stress, which further changed the extra-cytoplasmic structures and cell wall composition. Thus, exogenous P promoted the immobilization of Cd onto the cell wall and protected protoplast primarily through indirectly regulating the binding capacity of the root cell wall for Cd.


Subject(s)
Lolium , Soil Pollutants , Cadmium/metabolism , Lolium/metabolism , Plant Roots/metabolism , Pectins/metabolism , Cell Wall/metabolism , Soil Pollutants/metabolism
16.
PLoS One ; 18(11): e0293661, 2023.
Article in English | MEDLINE | ID: mdl-38011254

ABSTRACT

In order to investigate the impact of herbaceous root development on soil slope stability in expansive soil areas, the research was conducted in the soil slope experimental area of Yaoshi Town, Shangzhou District, Shangluo City. Three types of herbaceous plants, namely Lolium perenne, Medicago, and Cynodon dactylon, were planted to examine their influence on slope stability. The results indicated that Lolium perenne had significantly higher root length density and root surface area density compared to Cynodon dactylon and Medicago. However, the root weight density of Cynodon dactylon was found to be highest. The roots of Lolium perenne, Cynodon dactylon, and Medicago were predominantly observed in diameter ranges of 0 < L ≤ 1.0 mm, 0 < L ≤ 2.5 mm, and 2.5 < L ≤ 3.0 mm, respectively. The roots of herbaceous plants have the ability to enhance water retention in soil, resist hydraulic erosion of slope soil, and reduce soil shrinkage and swelling. During the initial phase of herbaceous planting, there is an accelerated process of organic carbon mineralization in the soil. The roots of herbaceous plants play a crucial role in soil consolidation and slope protection. They achieve this by dispersing large clastic particles, binding small particles together, altering soil porosity, enhancing soil water retention, and reducing soil water infiltration. It was found that Lolium perenne and Medicago, which have well-developed roots, exhibited superior slope protection effects. These findings contribute to the theoretical understanding for the implementation of green ecological protection technology on soil slopes.


Subject(s)
Lolium , Soil , Plant Roots/metabolism , Lolium/metabolism , Plants/metabolism , Cynodon/metabolism , Medicago , Water/metabolism
17.
Braz J Med Biol Res ; 56: e12957, 2023.
Article in English | MEDLINE | ID: mdl-37851792

ABSTRACT

Lolium multiflorum grass is the major pollen allergen source in the southern region of Brazil, but most of its allergens remain poorly characterized. The aim of this study was to investigate antibody reactivity to L. multiflorum crude and carboxymethyl-ligand extracts in allergic patients and healthy individuals. Ion exchange carboxymethyl (CM) chromatography (CM-Sepharose) was used to isolate proteins (S2) from L. multiflorum crude extract (S1), which were assessed by SDS-PAGE. S1- and S2-specific IgE and IgG4 levels were measured by ELISA using sera from 55 atopic and 16 non-atopic subjects. Reactive polypeptide bands in S1 and S2 were detected by immunoblotting, and the most prominent bands in S2 were analyzed by mass spectrometry (MS-MS). Similar IgE and IgG4 levels were observed to both S1 (IgE median absorbance: 1.22; IgG4 median absorbance: 0.68) and S2 (IgE median absorbance: 1.26; IgG4 median absorbance: 0.85) in atopic subjects. S1 and S2 had positive correlations for IgE and IgG4 (IgE: r=0.9567; IgG4: r=0.9229; P<0.0001) levels. Homology between S1 and S2 was confirmed by IgE (84%) and IgG4 (83%) inhibition. Immunoblotting revealed that the 29-32 kDa band was recognized by 100% of atopic subjects in both S1 and S2. MS-MS analysis identified similarity profile to groups 1 and 5 grass allergens. This study revealed that carboxymethyl-ligand fraction played an important role for pollen allergy diagnosis by containing clinically relevant allergens and constituted a promising candidate for allergen-specific immunotherapy.


Subject(s)
Lolium , Humans , Lolium/metabolism , Brazil , Pollen/metabolism , Carrier Proteins , Ligands , Immunoglobulin E/metabolism , Allergens/chemistry , Immunoglobulin G
18.
Huan Jing Ke Xue ; 44(10): 5746-5756, 2023 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-37827790

ABSTRACT

The application of exogenous growth-regulating substances is an effective technique to enhance plant stress tolerance. Here, a hydroponic experiment was conducted to investigate the effects of exogenous basal application of 0.1 mmol·L-1 spermidine (Spd) on both the physiology and molecular biology of ryegrass root systems under varying degrees (0, 5, and 10 mg·L-1) of cadmium (Cd) stress using ryegrass as the test plants. The results of physiological studies revealed that Cd stress significantly reduced the physiological functions of the ryegrass root system, whereas the addition of Spd effectively alleviated the negative effects caused by Cd. The most significant effect was on the root soluble protein content, which increased by 90.91% and 158.35% compared with 5 mg·L-1and 10 mg·L-1 Cd alone. Spd also inhibited the accumulation of oxidative stress products malondialdehyde (MDA) and hydrogen peroxide (H2O2) by increasing the ascorbic acid (ASA) and glutathione (GSH) content and peroxidase (POD) activity, whereas the effects on root activity and superoxide dismutase (SOD) activity were not significant. The results of molecular biology studies demonstrated that 10 mg·L-1 Cd stress caused differential expression of a large number of genes in ryegrass roots, and the number of differentially expressed genes, differential significance, and differential multiplicity were significantly reduced after the application of exogenous Spd. The most significant part of the GO enrichment analysis shifted from responding to organic cyclic compounds and aldehyde/ketone group transferase activity to responding to trivalent iron ions and 2'-deoxymugineic-acid 2'-dioxygenase activity. Single gene expression heat map analysis revealed that exogenous Spd upregulated the expression of genes encoding zinc-iron transporter protein and 2'-deoxymugineic-acid 2'-dioxygenase, which improved the uptake and utilization of iron by the root system. In conclusion, the application of certain concentrations of Spd could effectively regulate the response of ryegrass roots to Cd stress, enhance its tolerance physiology, and mitigate the toxic effects of Cd.


Subject(s)
Dioxygenases , Lolium , Spermidine/pharmacology , Spermidine/metabolism , Cadmium/toxicity , Cadmium/metabolism , Lolium/genetics , Lolium/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Antioxidants/metabolism , Oxidative Stress , Gene Expression Profiling , Dioxygenases/metabolism , Dioxygenases/pharmacology , Iron
19.
Sci Total Environ ; 904: 166975, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37704136

ABSTRACT

Reclaimed water (RW) has been extensively used for irrigation in agriculture, yet the occurrence of antibiotics in real RW, and their toxicity, uptake dynamics and metabolic fate still needs comprehensive exploration. In this study, we investigated the residual concentrations of nineteen antibiotics in the RW from four wastewater treatment plants, and determined their toxicity on plant at environment-relevant concentration. Total found concentrations of these antibiotics ranged from 623.66 ng L-1 to 1536.96 ng L-1, which decreased 10.3 and 19.4 % of roots' length and weight. Uptake dynamics analysis of the most hazardous antibiotic, norfloxacin (NFX) showed increasing amounts in the roots and leaves up to 3087.71 µg g-1. Ryegrass also can remove >80 % of 100 µg L-1 NFX being achieved by biodegradation through ring cleavage, decarboxylation, defluorination, hydrogenation, methylation and oxidation. Toxicity assessment of the identified byproducts showed their more toxic effect on fish, daphnia and algae. This study extended our understanding of the fate of antibiotics in plants during irrigation with reclaimed water, and emphasized its safety and pollutants' biomagnification concerns.


Subject(s)
Anti-Bacterial Agents , Lolium , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/metabolism , Lolium/metabolism , Water/metabolism , Agriculture , Biological Transport
20.
J Agric Food Chem ; 71(38): 13965-13978, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37704203

ABSTRACT

The various grass-induced epichloëcyclins of the Epichloë spp. are ribosomally synthesized and post-translationally modified peptides (RiPPs), produced as small, secreted cyclopeptides from a single gene, gigA. Here, four clustered and coregulated genes (gigA, gigB, gigC, and kexB) with predicted roles in epichloëcyclin production in Epichloë festucae were evaluated through gene disruption. Subsequent chemical analysis indicates that GigB is a DUF3328 domain-containing protein associated with cyclization of epichloëcyclins; GigC is a methyltransferase enzyme responsible for N-methylation of desmethylepichloëcyclins; and KexB is a subtilisin-like enzyme, partly responsible for the propeptide cleavage of epichloëcyclin intermediates. Symbiotic effects on the host phenotype were not observed for gigA, gigC, or kexB mutants, although ΔgigB infection correlated with increased host tiller height and biomass, while only ΔkexB exhibited an effect on endophyte morphology. Disrupting epichloëcyclin biosynthesis showed negligible influence on the biosynthesis of E. festucae-associated alkaloids. Epichloëcyclins may perform other secondary metabolism functions in Epichloë and other fungi.


Subject(s)
Epichloe , Lolium , Lolium/metabolism , Epichloe/genetics , Epichloe/metabolism , Peptides, Cyclic/genetics , Peptides, Cyclic/metabolism , Fungal Proteins/metabolism , Symbiosis , Multigene Family
SELECTION OF CITATIONS
SEARCH DETAIL
...